xgi.stats.diedgestats#
Directed edge statistics.
This module is part of the stats package, and it defines edge-level statistics. That
is, each function defined in this module is assumed to define an edge-quantity mapping.
Each callable defined here is accessible via a Network object, or a
DiEdgeView
object. For more details, see the tutorial.
Examples
>>> import xgi
>>> H = xgi.DiHypergraph([[{1, 2}, {5, 6}], [{4}, {1, 3}]])
>>> H.order()
{0: 3, 1: 2}
>>> H.edges.order.asdict()
{0: 3, 1: 2}
Functions
- attrs(net, bunch, attr=None, missing=None)[source]#
Access edge attributes.
- Parameters:
net (xgi.Hypergraph) – The network.
bunch (Iterable) – Nodes in net.
attr (str | None (default)) – If None, return all attributes. Otherwise, return a single attribute with name attr.
missing (Any) – Value to impute in case an edge does not have an attribute with name attr. Default is None.
- Returns:
If attr is None, return a nested dict of the form {edge: {“attr”: val}}. Otherwise, return a simple dict of the form {edge: val}.
- Return type:
dict
Notes
When requesting all attributes (i.e. when attr is None), no value is imputed.
Examples
>>> import xgi >>> H = xgi.DiHypergraph() >>> edges = [ ... ([{0, 1}, {2, 4}], 'one', {'color': 'red'}), ... ([{1, 2}, {2, 0}], 'two', {'color': 'black', 'age': 30}), ... ([{2, 3, 4}, {1}], 'three', {'color': 'blue', 'age': 40}), ... ] >>> H.add_edges_from(edges)
Access all attributes as different types.
>>> H.edges.attrs.asdict() {'one': {'color': 'red'}, 'two': {'color': 'black', 'age': 30}, 'three': {'color': 'blue', 'age': 40}} >>> H.edges.attrs.asnumpy() array([{'color': 'red'}, {'color': 'black', 'age': 30}, {'color': 'blue', 'age': 40}], dtype=object)
Access a single attribute as different types.
>>> H.edges.attrs('color').asdict() {'one': 'red', 'two': 'black', 'three': 'blue'} >>> H.edges.attrs('color').aslist() ['red', 'black', 'blue']
By default, None is imputed when a node does not have the requested attribute.
>>> H.edges.attrs('age').asdict() {'one': None, 'two': 30, 'three': 40}
Use missing to change the imputed value.
>>> H.edges.attrs('age', missing=100).asdict() {'one': 100, 'two': 30, 'three': 40}
- order(net, bunch, degree=None)[source]#
Edge order.
The order of a directed edge is the number of nodes contained in the union of the head and the tail minus 1.
- Parameters:
net (xgi.Hypergraph) – The network.
bunch (Iterable) – Edges in net.
degree (int | None) – If not None (default), count only those member nodes with the specified degree.
- Return type:
dict
See also
Examples
>>> import xgi >>> H = xgi.DiHypergraph([[{1, 2}, {5, 6}], [{4}, {1, 3}]]) >>> H.edges.order.asdict() {0: 3, 1: 2}
- size(net, bunch, degree=None)[source]#
Edge size.
The size of a directed edge is the number of nodes contained in the union of the head and the tail.
- Parameters:
net (xgi.Hypergraph) – The network.
bunch (Iterable) – Edges in net.
- Return type:
dict
See also
Examples
>>> import xgi >>> H = xgi.DiHypergraph([[{1, 2}, {5, 6}], [{4}, {1, 3}]]) >>> H.edges.size.asdict() {0: 4, 1: 3}
- head_order(net, bunch, degree=None)[source]#
Head order.
The order of the head is the number of nodes it contains minus 1.
- Parameters:
net (xgi.Hypergraph) – The network.
bunch (Iterable) – Edges in net.
- Return type:
dict
See also
Examples
>>> import xgi >>> H = xgi.DiHypergraph([[{1, 2}, {5, 6}], [{4}, {1, 3}]]) >>> H.edges.head_order.asdict() {0: 1, 1: 1}
- head_size(net, bunch, degree=None)[source]#
Head size.
The size of the head is the number of nodes it contains.
- Parameters:
net (xgi.Hypergraph) – The network.
bunch (Iterable) – Edges in net.
- Return type:
dict
See also
Examples
>>> import xgi >>> H = xgi.DiHypergraph([[{1, 2}, {5, 6}], [{4}, {1, 3}]]) >>> H.edges.head_size.asdict() {0: 2, 1: 2}
- tail_order(net, bunch, degree=None)[source]#
Tail order.
The order of the tail is the number of nodes it contains minus 1.
- Parameters:
net (xgi.Hypergraph) – The network.
bunch (Iterable) – Edges in net.
- Return type:
dict
See also
Examples
Examples
>>> import xgi >>> H = xgi.DiHypergraph([[{1, 2}, {5, 6}], [{4}, {1, 3}]]) >>> H.edges.tail_order.asdict() {0: 1, 1: 0}
- tail_size(net, bunch, degree=None)[source]#
Tail size.
The size of the tail is the number of nodes it contains.
- Parameters:
net (xgi.Hypergraph) – The network.
bunch (Iterable) – Edges in net.
- Return type:
dict
See also
Examples
>>> import xgi >>> H = xgi.DiHypergraph([[{1, 2}, {5, 6}], [{4}, {1, 3}]]) >>> H.edges.tail_size.asdict() {0: 2, 1: 1}